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Explanation

KIGLUAIK GROUP

Mafic to intermediate diabase dikes, generally 1-5 m thick, containing plagioclase + 
hornblende + biotite ± clinopyroxene ± olivine ± quartz. Dikes cut across regional 
foliation, are steeply dipping, and are generally oriented N30oE to N50oE. Dikes are 
chemically simlar to the lower unit of the pluton (Kd) and are at least 84 Ma based on 
40Ar/39Ar dating of biotite and hornblende, and younger than 90 Ma based on 
cross-cutting relationships with Kg and Kd (Amato et al., 2003).

Black graphitic and siliceous argillite, phyllite and schist, siltstone and quarztite with 
rare intervals of gray calcite limestone and marble.  Equivalent to GQof
Till (1980), Pollock (1982), Lieberman (1988), and pCPzsgb of Bundtzen et al. (1994).

pCPzb

NOME GROUP

Undifferentiated metamorphic rocks.pCPzngu

Pelitic and semipelitic quartz mica schist containing white mica ± chlorite ± quartz ± 
chloritoid ± albite ±epidote ±graphite. Equivalent to the PS units of Till (1980), Pollock 
(1982), Lieberman (1988), as mapped in the Nome Group.

pCPzqms

Undifferentiated mixed mafic volcanic, metasedimentary (including marble) and 
tuffaceous rocks of low metamorphic grade. Unit is extremely poorly exposed and 
mapped only in the northwestern part of map area.

pCPzmvu

Mafic to calcareous chlorite albite schist containing chlorite + albite + quartz + 
white mica ± epidote/clinozoisite ± biotite ± titanite ± calcite. Equivalent to QFG of 
Till (1980), Pollock (1982), and Lieberman (1988), and pCPzsa, pCPzt, pCPztc of 
Bundtzen et al. (1994).  

pCPzcs

Massive to foliated metabasalt flows (?) and metamorphosed gabbro/diabase sills, 
dikes and/or stocks containing chlorite + albite + epidote ± actinolite ± glaucophane 
± garnet ± sphene ± quartz ± white mica ± biotite ± calcite. Equivalent to the 
pCPzb unit of Bundtzen et al. (1994). 

pCPzmb

Undifferentiated greenschist to amphibolite facies pelitic and psammitic schists 
containing quartz + biotite + graphite ± staurolite  ± sillimanite ± muscovite ± 
K-feldspar.  Includes subunits of pCPzqc and pCPzbs described below. Equivalent to 
PS unit of Till (1980), Pollock (1982), and Lieberman (1988).

pCPzpsu
pCPzqc

pCPzbs

Quartzite, quartzose schists, and minor calc-silicate bearing psammitic schist containing 
quartz + biotite ± plagioclase ± actinolite ± diopside ± epidote/clinozoisite ± graphite 
± white mica ± sillimanite with lesser marble and pelitic schist horizons. Proportion of 
pelitic schist increases eastward in the map area.

pCPzqc

Biotite-rich pelitic schist containing quartz + biotite + graphite ± muscovite ± garnet 
± staurolite ± sillimanite with intervals of biotite-bearing quartzose graphitic schist 
and psammitic schist.

pCPzbs

Heterogeneous metasedimentary unit that includes platey quartzofeldspathic, pelitic and 
quarztose schist, lesser biotite-rich quartzite, gray calcite marble, and calc-silicate 
bearing impure marble interlayered on a scale varying from a few centimeters to 
serveral meters. Quartzofeldspathic schists contain biotite + K-feldspar + plagioclase 
+ biotite  ± graphite ± sillimanite ± garnet. Pelitic schists contain biotite + quartz ±
graphite ± garnet + sillimanite + K-feldspar ± plagioclase.

pCPzhs

Highly resistant, coarse-grained pelitic paragneiss and schist present in layers 
varying in thickness from 10-100 meters containing quartz + plagioclase + 
biotite ± sillimanite ± K-feldspar ± garnet ± graphite.  Locally pervasively 
migmatized.

pCPzbgg

Undifferentiated pelitic to quartzo-feldspathic rocks of the Kigluaik Group. pCPzkgu

Undifferentiated calc-silicate and marble bearing units of the Kigluaik Group. 
Includes pCPzm and pCPzmc as dominant subunits described below.pCPzmu

pCPzm

pCPzmc

Massive to foliated blue-gray calcite marble.pCPzm

Massive to foliated blue-gray calcite marble interlayered with calc-silicate bearing 
dolomitic and calcite marble, schist, and gneiss.pCPzmc

ORTHOGNEISS

Precambrian granitic orthogneiss equivalent to the Dorothy Creek orthogneiss. Dated 
using U-Pb zircon analysis at 681 ± 3 Ma (Patrick and McClelland, 1995) from 
Dorothy Creek locality (not shown on this map) and 678 ± 4 Ma (Amato 
and Wright, 1998) at locality north of Salmon Lake.

pCdog

Undated granitic orthogneiss bodies of probable Proterozoic to early Paleozoic age.pCPzuog

Precambrian granitic Thompson Creek Orthogneiss.
Dated at 555 ± 15 Ma using U-Pb zircon (Amato et al., 1994; Amato and Wright, 1998).pCtog

Cretaceous garnet-bearing granitic orthogneiss dated at 105 ± 3 Ma using U-Pb 
zircon analysis (Amato et al., 1994).

Kgog

Syenitic orthogneiss containing K-feldspar + hornblende + garnet.  Dated
at 110 ± 5 Ma using U-Pb zircon analysis (Amato and Wright, 1998).

Ksog

Leucocratic fine to medium grained biotite granite and granodiorite. Includes upper 
unit of the Kigluaik pluton and minor granitic dikes.Kg

Granitic pegmatite dikes and sills containing quartz + feldspar ± biotite ± sillimanite 
± garnet ± muscovite ± tourmaline. Dikes and sills range from highly deformed to 
cross-cutting.  Generally 5-10 m thick. Shown schematically. 
Dated at 90-91 Ma using U-Pb monazite analysis (Amato and Wright, 1998).

Fine- to medium-grained biotite hornblende diorite, quartz diorite, granodiorite,
tonalite, and gabbro.  Comprises the lower unit of the Kigluaik pluton, dated at
90 ± 1 Ma using U-Pb zircon analysis (Amato and Wright, 1998).

Kd

UNDEFORMED IGNEOUS ROCKS

Biotite-In

Staurolite-In

Sillimanite-In

Sillimanite + K-feldspar-In

METAMORPHIC ISOGRADS
Dashed where approximate;
dotted where concealed

Strike and dip of foliation;
trend of stretching lineation

Geologic contacts- dashed where uncertain. 

Normal faults; dots on downthrown side
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0 1 2
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Blue-gray calcite-bearing platy and massive marble. pCPzm
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Qu
Undifferentiated Quaternary deposits, including all alluvial, colluvial, glacial, and 
talus deposits. For detailed maps of these deposits see Bundtzen et al. (1994)
and Kaufman et al. (1989). 
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Faults with uncertain displacement

Impure marble, dolomite and calc-schist.pCPzim
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Exploring for “blind” fault-hosted geothermal systems using low temperature thermochronology and thermo-kinematic modeling: 
a pilot study on the Kigluaik normal fault near Nome, Alaska

Elizabeth L. Miller and Carl Hoiland*, Dept. of Geological Sciences, Stanford University (*also, Zankskar Geothermal and Minerals, Inc. (ZGM)) 
PROJECT DESCRIPTION:  Geothermal energy serves a critical role in the transition to a carbon-free energy future. As an 
effectively emission free source of power it can serve as the dispatchable complement to intermittent sources like wind 
and solar.  A power source whose efficiencies are increased in colder climates, it offers an important means to decarbon-
ize Arctic societies where high latitude and extreme climates make solar, wind, hydro, and battery sources of energy sig-
nificantly less cost-effective. To date, high up-front capital costs and the risks of drilling dry holes during exploration has 
hindered its development.

A major uncertainty in exploration for natural geothermal systems is whether an active fault mapped at the surface is 
permeable at depth and is acting as an upwards pathway for hydrothermal fluids. Tools that can assess the fluid flow his-
tory and the present behavior of long-lived active or recently re-activated faults prior to drilling are therefore critical. A 
promising means for doing so is the high-resolution characterization  of thermal histories from rocks within and increas-
ingly distant from the surface trace of major faults using what are known as low-temperature thermochronological meth-
ods. Low temperature thermochronometers such as the U-Th/He and fission track systems in the mineral apatite are sen-
sitive to even short-lived thermal disturbances and thus offer the potential to quantify hydrothermal circulation histories. 
Collecting this kind of data rapidly and affordably is now possible thanks to dramatically declining costs in mass spec-
trometry and improved computational modeling, making it a novel,cost-effective and underutilized tool for geothermal 
exploration.

The proposed study seeks to demonstrate the utility of using low-temperature thermochronology methods in assessing 
the geothermal potential of an active regional fault system in western Alaska. Combined with 3D geologic modeling, 
the results of this study are anticipated to 1) generally refine our understanding of “blind” geothermal systems (i.e. natu-
rally occurring commercial-grade geothermal systems that have no hot springs or obvious hydrothermal activity at the 
surface), and 2) specifically test if previously unexplored extensional fault-controlled geothermal systems exist within 
the state of Alaska.

SUMMARY THOUGHTS:  Althought the Earth can provide us with an unlimited supply of heat, commercial-grade geothermal systems are primarily limited by the amount 
of heat and permeability that can be found at relatively shallow depths in the Earth’s crust. Average heat flux is somewhat easy to quantify around the globe, but predicting 
where permeable pathways are present in the subsurface - which often controls the locations of localized temperature anomalies - is much less straightforward (Siler et al., 
2019). It was with the hopes of side-stepping the geological challenge of locating naturally-occuring permeable pathways in the crust that a great deal of government sub-
sidy (e.g. >$100M in US DOE grants since 2000) has been devoted towards engineering permeability in place using technologies that can artificially fracture rocks (i.e. “en-
hanced geothermal systems”, “hot-dry rock”). But due to outstanding challenges in engineered systems (e.g. scaling, induced seismicity, cost), 99.99% of all geothermal 
power produced today is from naturally occurring systems. Thus, at least in the near term, successful geothermal development depends on identifying naturally occurring 
systems and to do so, we need a suite of new techniques capable of doing so affordably and effectively, especially in frontier regions.
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FIRST PHASE OF PROJECT: Generation of a 3D geologic model (e.g., Siler et al., 2019) that incor-
porates all available datasets and those provided by ZGM, including new fault mapping informed 
by photogrammetry, thermal imaging of surficial water bodies, shallow subsurface temperature 
data, fault slip history constraints from 10Be surface exposure dating and stress state inversions 
from microseismicity and other local strain indicators.  Central and Western Alaska are tectonically 
complex regions that are deforming today as a result of compression and stress transmission 
across the state from the plate boundary and intracontinental strike-slip faulting.  Strike-slip faulting 
interacts in a poorly understood fashion with extensional faulting in central and western Alaska; 
these extensional fault systems are the most likely to host geothermal systems.    

critical 
fault step-over

THE PROBLEM:  Previous studies in this region of Alaska focused almost entirely on enigmatic hot springs in the Imuruk Basin: the “Pilgrim 
Hot Springs”. The latest studies from 2010-2014 (ACEP, 2015) included drilling 8 new wells to max. depth of 1294 ft and achieving max. temp. 
of 91°C. But ubiquitous temperature reversals suggested drilling was not directly over the main area of upwelling (Fig. 2). No further develop-
ment occurred, likely due to the small size of the resource identified at the hot springs location.

Re-evaluation of the regional data sets by Zanskar Geothermal & Minerals, Inc. (ZGM) suggests the hot springs are surface manifestations of 
outflow sheets that are many kilometers away from their upwelling source, similar to such occurrences at extensional fault hosted geothermal 
systems in Nevada (e.g. Coolbaugh et al., 2006). In this model, the active range-bounding extensional fault system is the most permeable 
structure in the region and thus also likely the location of primary hydrothermal upwelling. Such a model explains the temperature reversals 
encountered during drilling at Pilgrim Hot Springs and the Na-K-Ca geothermometry of hot spring samples that suggest source temperatures 
(~145 °C) are much higher than max. temperatures encountered during drilling (91°C) (ACEP, 2015).
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 Shaded DEM image of a portion of the Kigluaik fault showing quaternary ruptures (flown by 
ZGM) For location see box in Fig. 1B below  

Fig. 1C

Shaded relief map of the Kigluaik Mountains (geologic map shown below in Fig. 1A) from Arctic 
DEM (https://www.pgc.umn.edu/data/arcticdem/).  

ACEP (2015) subsurface model of the Pilgrims 
Hotsprings geothermal prospect. 

Pilgrim Hotsprings looking S to Kigluaik Mts. photo credit R. Benoit, flickr

Fig. 2

Analogous normal faults to the Kigluaik fault are present across the entire Basin and Range prov-
ince of the western U.S. where they have been studied in detail, particularly in terms of their associ-
ated geothermal systems.  This example is the Surprise Valley fault studied by Stanford (Lerch et al., 
2009) in northwesternmost California.  Depending on fault slip rates, hot rocks (T’s of~ 300°C) near 
the ductile-brittle transition zone (DBTZ) in the earth’s crust can be moved closer to surface by 
faulting and provide good geothermal prospects if  fluid pathways exist in the faulted rocks.

SECOND PHASE OF PROJECT: Low temperature thermochronology – Samples will be collected from bedrock along fault normal tran-
sects of the fault and from different segments of the fault with reference to 3D modeling as to the o ptimal orientation for fault-slip 
generated permeability. Modeling will use the open-source code Beo v.1.0 (Luijendijk, 2019), which allows for simulating the effect of 
hydrothermal activity on helium concentrations in apatite from surface outcrops. Benefits of this new code package is that it provides a 
more realistic representation of spring and land surface temperatures compared to models that apply a fixed heat flux, temperature, or 
transfer coefficient to the surface. Model parameter space will be informed by the 3D geologic model (Phase 1) and iteratively ex-
plored to find best fit solutions to the measured sample results, thereby providing constraints on the hydrothermal evolution of the Ki-
gluaik normal fault system. It is expeditious to carry out this work here because we already have data on the time-T evolution of this 
fault system (Dumitru et al., 1995). This work will be completed in tandem with an exploration campaign planned by Zanskar Geother-
mal & Minerals, Inc. (ZGM Inc.), on the same active fault system. Potential drilling by ZGM Inc. will allow for an important test of the 
modeling generated by this research, and serve to validate its applicability to undiscovered resources elsewhere.  In addition, we hope 
to carry out a parallel study on at least one more normal fault system that is optimized for strategic sampling and has a known slip his-
tory in the Basin and Range. Because we have worked on so many of these and know their slip rates and cooling histories we can see 
how the detailed measured T-t profiles along the fault deviate from those within the fault block due to hydrothermal circulation.  Where 
possible, we will collect or reference complementary data sets such as those provided by U-Th-Pb dating of calcite vein materials in 
faults, apatite fission track ages, length modelling of tracks (~ 100°C) and the He3/He4 low T chronometer.
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